lower semi-continuous - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

lower semi-continuous - translation to ρωσικά

PROPERTY OF FUNCTIONS WEAKER THAN CONTINUITY
Semicontinuous; Semicontinuity; Semi-continuous; Lower semi-continuous; Upper semi-continuous; Lower semicontinuous; Upper semicontinuous; Semi-continuous function; Semi-continuous mapping; Semicontinuous function; Upper-semicontinuous; Upper semicontinuity; Lower semicontinuity; Upper semi-continuity; Lower semi-continuity
  • A lower semicontinuous function that is not upper semicontinuous. The solid blue dot indicates <math>f\left(x_0\right).</math>
  • An upper semicontinuous function that is not lower semicontinuous. The solid blue dot indicates <math>f\left(x_0\right).</math>

lower semi-continuous         

общая лексика

полунепрерывный снизу

lower semicontinuity         

математика

полунепрерывность снизу

semicontinuous function         

математика

полунепрерывная функция

Ορισμός

continuous function
A function f : D -> E, where D and E are cpos, is continuous if it is monotonic and f (lub Z) = lub f z | z in Z for all directed sets Z in D. In other words, the image of the lub is the lub of any directed image. All additive functions (functions which preserve all lubs) are continuous. A continuous function has a {least fixed point} if its domain has a least element, bottom (i.e. it is a cpo or a "pointed cpo" depending on your definition of a cpo). The least fixed point is fix f = lub f^n bottom | n = 0..infinity (1994-11-30)

Βικιπαίδεια

Semi-continuity

In mathematical analysis, semicontinuity (or semi-continuity) is a property of extended real-valued functions that is weaker than continuity. An extended real-valued function f {\displaystyle f} is upper (respectively, lower) semicontinuous at a point x 0 {\displaystyle x_{0}} if, roughly speaking, the function values for arguments near x 0 {\displaystyle x_{0}} are not much higher (respectively, lower) than f ( x 0 ) . {\displaystyle f\left(x_{0}\right).}

A function is continuous if and only if it is both upper and lower semicontinuous. If we take a continuous function and increase its value at a certain point x 0 {\displaystyle x_{0}} to f ( x 0 ) + c {\displaystyle f\left(x_{0}\right)+c} for some c > 0 {\displaystyle c>0} , then the result is upper semicontinuous; if we decrease its value to f ( x 0 ) c {\displaystyle f\left(x_{0}\right)-c} then the result is lower semicontinuous.

The notion of upper and lower semicontinuous function was first introduced and studied by René Baire in his thesis in 1899.

Μετάφραση του &#39lower semi-continuous&#39 σε Ρωσικά